ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
R. T. Santoro, R. G. Alsmiller, Jr., J. M. Barnes
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 449-459
Technical Paper | Blanket Engineering | doi.org/10.13182/FST91-A29385
Articles are hosted by Taylor and Francis Online.
Neutronics parameters including the source neutron spectrum, activation rates, and the tritium breeding in the Li2O test zone of the Fusion Neutron Source Phase II experiment performed at the Japan Atomic Energy Research Institute are calculated using the Monte Carlo code MORSE with ENDF/B-V transport and reaction cross sections. Favorable comparisons between the measured and calculated results are achieved for the 27Al(n,α), 58Ni(n,p), 93Nb(n,2n), and 197Au(n,2n) reactions. Calculated 58Ni(n,2n) and 197Au(n,γ) reactions do not agree with measured values within 10 to 40%. For the nickel reaction, the differences may be due to poor data in the ORACT files, while discrepancies for the gold data may be due to unknown quantities of hydrogen-rich epoxy used to coat the Li2CO3 blocks used in the test assembly walls. The calculated tritium breeding in the Li2O agrees with experimental values within ±10% for 6Li and ±15 to 20% for 7Li.