ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
John N. Harb, William G. Pitt, H. Dennis Tolley
Fusion Science and Technology | Volume 18 | Number 4 | December 1990 | Pages 669-677
Technical Notes on Cold Fusion | doi.org/10.13182/FST90-A29261
Articles are hosted by Taylor and Francis Online.
Experiments are conducted to examine neutron emissions associated with electrolysis of 3 M LiOD in heavy water with a palladium electrode. The data show evidence of an increase in the number of neutrons detected during heavy water electrolysis relative to light water background experiments. No anomalous heat, tritium, or helium is detected. A rigorous statistical analysis is used to describe the distribution of both the neutron burst size and burst rate, each of which is characterized by a single parameter. The background neutron emission can be characterized by a burst size of 2 and a burst rate of 0.123 s−1, although some variability is observed. Analysis establishes the statistical significance of increased neutron emission during foreground (heavy water) runs, even when background variability is taken into account. In one case, the neutron emission is characterized by large but infrequent bursts. In the other case, only the burst rate increases to 0.203 s−1. Although the data are limited, the need for careful statistical analysis and the importance of experimental design are shown.