A simple fusion experiment for the production and control of deuterium-tritium-ignited plasmas for scientific study is considered. The basic elements of fusion product alpha-particle behavior at ignition are analyzed. Alpha-particle containment is rather high even with the assumption of significant levels of toroidal asymmetries. Production of thermally stable plasmas is possible because of the low-beta thermal damping provided by electron cyclotron emission. The stability of internal kink modes, high-number ballooning modes, and toroidicity-induced shear Alfvén eigenmodes is investigated in the presence of fusion alpha particles. These modes can be either stable or unstable depending on the selected operational regime at ignition.