ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Vern C. Rogers, Gary M. Sandquist
Fusion Science and Technology | Volume 16 | Number 2 | September 1989 | Pages 254-259
Technical Note | doi.org/10.13182/FST89-A29158
Articles are hosted by Taylor and Francis Online.
Nuclear fusion between deuterons under ambient conditions has been observed in the metal cathode of an electrolysis cell with an electrolyte of heavy water. The evidence for the fusion reaction is derived primarily from the detection of a low level of 2.45-MeV neutrons presumably from the neutron branch of the deuterium fusion reaction. However, the estimated fusion energy yield associated with the neutron output is insufficient to account for the majority of the reported energy gain if the neutron-proton branch of the deuterium fusion reaction remains about equal to ambient conditions. The excess energy gain may arise from an unobserved chemical reaction or an unfamiliar nuclear reaction. Reported evidence of an excess of 4He in the vicinity of the cathode may indicate that a 4He branch from the deuterium fusion reaction may proceed at ambient conditions through internal electron conversion without a large release of gamma rays. These issues are explored, and attempts are made to provide physical mechanisms and explanations for the cold fusion experimental observations.