ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
H. Noguchi, Clay E. Easterly, M. R. Bennett
Fusion Science and Technology | Volume 16 | Number 2 | September 1989 | Pages 137-142
Technical Paper | Tritium System | doi.org/10.13182/FST89-A29142
Articles are hosted by Taylor and Francis Online.
The conversion reaction of tritium gas (T2) to tritiated water was studied experimentally at initial tritium concentrations between 9.6 × 10−3 and 48 GBq · m−3 (2.6 × 10−4 and 1.3 Ci · m−3) in air. Effects of water vapor and catalysts on the conversion reaction were also examined. Stainless steel, copper, paint, and platinum black were used as potential catalytic surfaces. First-order rate constants for the reaction in air are found to be independent of initial tritium concentration, and there is no effect from water vapor on the reaction. The conversion is insensitive to the presence or absence of stainless steel and copper. Paint sorbs T2 and HTO, but the latter is desorbed from the paint by heating. Platinum black produces the expected increase in the rate of reaction.