ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
A webinar, and a new opportunity to take ANS’s CNP Exam
Applications are now open for the fall 2025 testing period for the American Nuclear Society’s Certified Nuclear Professional (CNP) exam. Applications are being accepted through October 14, and only three testing sessions are offered per year, so it is important to apply soon. The test will be administered from November 12 through December 16. To check eligibility and schedule your exam, click here.
In addition, taking place tomorrow (September 19) from 12:00 noon to 1:00 p.m. (CDT), ANS will host a new webinar, “How to Become a Certified Nuclear Professional.” More information is available below in this article.
Sanae-Inoue Itoh, Atsushi Fukuyama, Tomonori Takizuka, Kimitaka Itoh
Fusion Science and Technology | Volume 16 | Number 3 | November 1989 | Pages 346-364
Technical Paper | Plasma Engineering | doi.org/10.13182/FST89-A29126
Articles are hosted by Taylor and Francis Online.
The consistency of physics constraints imposed on a core plasma in a tokamak reactor is investigated. Conditions for the steady-state operation of the International Thermonuclear Experimental Reactor (ITER)-grade plasma are listed, i.e., the density limit, the critical beta, feasibility of full current-drive and divertor functions, etc. The parameter regime, in which these guidelines are simultaneously satisfied, is investigated. Based on the available data base, the consistency of the conditions is examined. The L-mode scaling of the energy confinement time is employed for extrapolation to the ITER-grade plasma. The Q value and the size dependence are studied. The consistent operating regime of the steady-state operation is found. If off set-linear scaling is applied, the minimum and necessary input power is ∼130 MW, which enables the full current drive and the steady-state operation of Q = 2.3 with Ip = 20 MA. When the input power is increased to 200 MW, a Q value of 5 is predicted.