ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
M. Salvioni, M. Petilli, L. Tondinelli, G. Sacerdoti
Fusion Science and Technology | Volume 16 | Number 4 | December 1989 | Pages 498-506
Technical Paper | Special Section: Cold Fusion Technical Notes / Materials Engineering | doi.org/10.13182/FST89-A29112
Articles are hosted by Taylor and Francis Online.
Damage caused by neutrons in the first wall of fusion reactor is studied in detail for two different structural materials (Type 316 stainless steel and Nimonic PE-16) in the Princeton fusion power plant design. The first-wall neutron spectrum is calculated by the ANISN code, and a dosimetric analysis is performed for both materials. Moreover, a complete study of damage (swelling and creep) during reactor life is done for Type 316 stainless steel. On the basis of a 1% creep strain, the lifetime of a Type 316 stainless steel first wall is calculated to be ∼2 yr, compared with the ∼22-yr lifetime obtained for Nimonic in the Princeton design. In this way, the economic advantage of a superalloy, compared to stainless steel, has been confirmed.