ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Winston H. Bostick
Fusion Science and Technology | Volume 12 | Number 1 | July 1987 | Pages 92-103
Technical Paper | Experimental Device | doi.org/10.13182/FST87-A25053
Articles are hosted by Taylor and Francis Online.
In 1966, the Stevens Institute of Technology (SIT) plasma focus group demonstrated experimentally that the current sheath of the plasma focus is carried by pairs of plasma vortex filaments, which exhibit a force-free, Beltrami-type morphology. Experiments at SIT in 1980 and at the Air Force Weapons Laboratory (AFWL) show that relativistic electron beams traveling through a background gas of ∼1 Torr, and even in a “vacuum” diode, exhibit the same type of filamentary morphology, but on a spatial dimension scale, which extends down to the 1-µm region. Some of the experimental evidence accumulated in work at AFWL from 1979 to 1981, which supports the statement that there is a close similarity between current-carrying morphologies of the plasma focus and the relativistic beam machines, is presented.