ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
M. Matsuyama, K. Ichimura, K. Ashida, K. Watanabe, H. Sato
Fusion Science and Technology | Volume 8 | Number 2 | September 1985 | Pages 2461-2466
Material Property and Tritium Control | Proceedings of the Second National Topical Meeting on Tritium Technology in Fission, Fusion and Isotopic Applications (Dayton, Ohio, April 30 to May 2, 1985) | doi.org/10.13182/FST85-A24648
Articles are hosted by Taylor and Francis Online.
and
H. Sato
Research and Development Laboratory, Aloka Co. Ltd. 1-22-6 Mure, Mitaka, Tokyo, Japan The contamination of three ionization chambers(Cu, Ni-plated, and Au-plated chambers) due to exposure to HT or HTO was measured. Considerable contamination took place for all of the chambers due to exposure to HTO. This is caused by the physical adsorption of HTO. The extent of the contamination differed from each other (Ni > Au > Cu), being considered due to difference in their surface roughness. In case of the exposure to HT, the Cu-chamber was contaminated in room air, whereas the Ni-chamber did in dry air atmosphere. This is considered due to the adsorption of HTO (being formed with catalytic exchange reaction between HT and H2O) on the Cu-chamber and that of HT on the Ni-chamber. The Au-chamber was not contaminated with the exposure to HT. This is because neither the adsorption of HT nor the catalytic exchange reaction takes place on this surface.