ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
K. Ichimura, M. Matsuyama, K. Watanabe, T. Takeuchi
Fusion Science and Technology | Volume 8 | Number 2 | September 1985 | Pages 2407-2412
Material Property and Tritium Control | Proceedings of the Second National Topical Meeting on Tritium Technology in Fission, Fusion and Isotopic Applications (Dayton, Ohio, April 30 to May 2, 1985) | doi.org/10.13182/FST85-A24639
Articles are hosted by Taylor and Francis Online.
The rates of ab/desorption of water vapor for Zr-V-Fe getter were investigated by means of mass analyzed thermal desorption spectroscopy. The absorption rate obeyed first order kinetics with respect to the pressure of water vapor. The activation energies for absorption were determined as 1.8 (H2O), 2.7 (D2O), and 3.2 (T2O) kcal/mol. Only hydrogen was desorbed by heating the getter in which water was absorbed. The desorption obeyed second order kinetics with respect to the amount of absorption. The activation energies for desorption were determined as 28.0 (H2O), 28.6 (D2O), and 29.3 (T2O) kcal/mol. It is concluded that the rate determining step for absorption is the dissociation reaction of adsorbed water molecules or hydroxyl groups on the surface. The rate determining step for desorption is the association reaction of hydrogen atoms which diffuse from the bulk to the surface.