American Nuclear Society
Home

Home / Publications / Journals / Fusion Science and Technology / Volume 75 / Number 5

Advancements in the Helium-Cooled Pebble Bed Breeding Blanket for the EU DEMO: Holistic Design Approach and Lessons Learned

Francisco A. Hernández, Pavel Pereslavtsev, Guangming Zhou, Béla Kiss, Qinlan Kang, Heiko Neuberger, Vladimir Chakin, Ramil Gaisin, Pavel Vladimirov, Lorenzo V. Boccaccini, Gandolfo A. Spagnuolo, Salvatore D’Amico, Ivo Moscato

Fusion Science and Technology / Volume 75 / Number 5 / July 2019 / Pages 352-364

Technical Paper / dx.doi.org/10.1080/15361055.2019.1607695

Received:June 15, 2018
Accepted:April 11, 2019
Published:June 20, 2019

The helium-cooled pebble bed (HCPB) blanket is one of the two concepts proposed as a driver blanket for the European Union Demonstration Fusion Power Reactor (EU DEMO). In contrast to past conceptual design studies, in the frame of the current Power Plant Physics and Technology of the EUROfusion Consortium, the ongoing EU DEMO preconceptual design activities have adopted a holistic and integrated (i.e., systems engineering) design approach. As a consequence of this new approach, many interfaces and requirements have been identified, some of them driving the design of the blankets. This paper shows the advancements in the HCPB breeding blanket and describes the lessons learned after implementing the new approach. This new set of requirements has led us to reconsider fundamental aspects of the HCPB blanket design, especially in the way of how the heat is extracted from the blanket. Among others, the requirement to achieve a mature balance of plant (BOP) system plays a central role as a key design driver and has forced us to reduce pressure drops in the breeding blanket. In this regard, the blanket has been redesigned, leading to an enhanced concept based on single-module segments with a hexagonal matrix of fuel-breeder pins. Both the fuel-breeder pins and the first wall (FW) are equipped with turbulence promoters (augmented wall roughness in the fuel-breeder pins and V-ribs in the FW), following a similar idea as in the past MAGNOX, Advanced Gas Reactor (AGR), and Gas Cooled Reactor (GCR) programs in fission. This has led to minimizing the pressure drops while maximizing the heat transfer. Also, the blanket outlet temperature has been extended to 520°C, following the same principle as in Generation IV’s GCRs of maximizing the temperature difference across the core to minimize the reactor mass flow rate and thus the circulating power. All these features have led to a remarkably low plant circulating power (80 to 90 MW) and the required power per helium blower (5 to 6 MW), which potentially solves the key long-standing problem of the BOP technology readiness level for an ≈2.4-GW(thermal) helium-cooled DEMO reactor.

 
advertisement