ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
Mahmoud Z. Youssef, Neil B. Morley, Dai-Kai Sze
Fusion Science and Technology | Volume 39 | Number 2 | March 2001 | Pages 839-845
Chamber Technology | doi.org/10.13182/FST01-A11963344
Articles are hosted by Taylor and Francis Online.
The nuclear performance of the thin Convective Liquid Flow First Wall (CLiFF) concept is investigated. Liquid walls offer the advantage of protecting solid structure behind them from excessive damage from neutrons originated in the plasma and thus have the capability for high power density applications; the central research focus of the Advanced Power Extraction (APEX) study. In the present parametric and scoping work, several combinations of liquid breeder and structure type where investigated. The aim is to maximize local tritium breeding ratio (TBR), power multiplication, and ensuring that the vacuum vessel and toroidal coils are protected from excessive radiation. The candidate liquid breeders considered are Li, Flibe, and Sn-Li. Vanadium-alloy is deployed with Li while either Ferritic steel or SiC is deployed with Flibe and Sn-Li. Deployment of other refractory alloys and their impact on TBR was also studied. The introduction of a beryllium multiplier zone in the blanket was shown to enhance tritium production capability, particularly for those liquid breeders whose TBRs are marginal.