The nuclear performance of the thin Convective Liquid Flow First Wall (CLiFF) concept is investigated. Liquid walls offer the advantage of protecting solid structure behind them from excessive damage from neutrons originated in the plasma and thus have the capability for high power density applications; the central research focus of the Advanced Power Extraction (APEX) study. In the present parametric and scoping work, several combinations of liquid breeder and structure type where investigated. The aim is to maximize local tritium breeding ratio (TBR), power multiplication, and ensuring that the vacuum vessel and toroidal coils are protected from excessive radiation. The candidate liquid breeders considered are Li, Flibe, and Sn-Li. Vanadium-alloy is deployed with Li while either Ferritic steel or SiC is deployed with Flibe and Sn-Li. Deployment of other refractory alloys and their impact on TBR was also studied. The introduction of a beryllium multiplier zone in the blanket was shown to enhance tritium production capability, particularly for those liquid breeders whose TBRs are marginal.