ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Japan gets new U for enrichment as global power and fuel plans grow
President Trump is in Japan today, with a visit with new Prime Minister Sanae Takaichi on the agenda. Takaichi, who took office just last week as Japan’s first female prime minister, has already spoken in favor of nuclear energy and of accelerating the restart of Japan’s long-shuttered power reactors, as Reuters and others have reported. Much of the uranium to power those reactors will be enriched at Japan’s lone enrichment facility—part of Japan Nuclear Fuel Ltd.’s Rokkasho fuel complex—which accepted its first delivery of fresh uranium hexafluoride (UF₆) in 11 years earlier this month.
A. L. Rogister
Fusion Science and Technology | Volume 37 | Number 2 | March 2000 | Pages 287-295
Instabilities and Transport | doi.org/10.13182/FST00-A11963223
Articles are hosted by Taylor and Francis Online.
We review some of the theoretical interpretations which have been given for the formation of the high E→r x B→ rotation shear layer observed concomitantly with the transition to and the operation in the high confinement mode. Those can be classified as follows: the origin of the large radial electric field is (i) anomalous, (ii) associated with loss of ions along open orbits (i.e. crossing the separatrix), (iii) related to the decoupling of the ion and electron flows by finite Larmor radius effects and inertia. It is generally accepted that E→r x B→ shear reduces the level of microturbulence and thus of anomalous transport; this point of view is adopted here and explained.