ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
F. Wagner, J. Baldzuhn, R. Brakel, B. Branas, R. Burhenn, J. Das, E. De La Luna, V. Erckmann, Y. Feng, S. Fiedler, L. Gianonne, P. Grigull, H.-J. Hartfuß, O. Heinrich, G. Herre, M. Hirsch, J.V. Hofmann, E. Holzhauer, R. Jaenicke, Ch. Konrad, G. Kocsis, W. Ohlendorf, P. Pech, F. Sardei, E. Wuersching, S. Zoletnik
Fusion Science and Technology | Volume 27 | Number 3 | April 1995 | Pages 32-39
Overview Paper | doi.org/10.13182/FST95-A11947043
Articles are hosted by Taylor and Francis Online.
We will give a summary on the status of H-mode studies on W7-AS stellarator. The major H-mode characteristics compare well with those known from the tokamak H-mode. All major characteristics of the H-mode are reproduced: The transition is spontaneous above a power and density threshold; particle and energy confinement improve simultaneously; a transport barrier at the edge develops with steep pressure gradients and ELMs appear; small scale fluctuations are strongly reduced and the development of a radial electric field is indicated by increased perpendicular impurity flow velocity. The temporal development of the transition seems to be distinctively slower than in tokamaks. The H-mode can be initiated by ECRH or NBI, respectively. The power threshold can be smaller than that of tokamaks. With ECRH, the density threshold is found to increase with heating power. The H-mode develops in small windows of the accessible iota range. These operational islands are characterised by a negative electric field already prior to the H-mode and a distinct maximum in space potential at the separatrix.