ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
V. Loffelmann, J. Mlynar, M. Imrisek, D. Mazon, A. Jardin, V. Weinzettl, M. Hron
Fusion Science and Technology | Volume 69 | Number 2 | April 2016 | Pages 505-513
Technical Paper | doi.org/10.13182/FST15-180
Articles are hosted by Taylor and Francis Online.
Tomography inversion has been used routinely for processing outputs of plasma radiation diagnostics. Various tomographic algorithms have been developed, with those based on Tikhonov regularization being among the fastest while still providing reliable results. This paper presents a further speed optimization of the minimum Fisher Tikhonov regularization algorithm based on reducing iteration cycles used during the calculation. Ten to twentyfold speed gain is achieved compared to the original implementation. Robustness of the new method is demonstrated using both artificially generated data sets and real data from the soft X-ray diagnostics at the COMPASS tokamak. The advantage gained by the optimization is investigated in particular with respect to the possibility of real-time control of the plasma position; the option of impurity control is also discussed.