ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Lloyd’s Register forms Maritime Nuclear Consortium to set international standards
London-based professional services organization and maritime classification society Lloyd’s Register has brought together a group of experts from the U.K. nuclear, maritime, insurance, and regulatory sectors with the primary goal of establishing international standards “for safe, secure, and commercially viable nuclear-powered ships.”
This Maritime Nuclear Consortium includes Lloyd’s Register as the group’s lead, safety administrator, and secretariat; Rolls-Royce, specializing in advanced reactor design; Babcock International Group (ship design, construction, and support); Global Nuclear Security Partners (security and safeguards); Stephenson Harwood (legal and regulatory issues); and NorthStandard (insurance).
Matthew C. Carroll, George H. Miley
Fusion Science and Technology | Volume 15 | Number 2 | March 1989 | Pages 183-192
Technical Paper | First Wall Technology | doi.org/10.13182/FST89-A25355
Articles are hosted by Taylor and Francis Online.
A 2½-dimensional geometric model is presented that allows calculation of power loadings at various points on the first wall of a thermonuclear fusion device. Given average wall power loadings for bremsstrahlung, cyclotron radiation, charged particles, and neutrons, which are determined from various plasma physics computation models, local wall heat loads are calculated by partitioning the plasma volume and surface into cells and superimposing the heating effects of the individual cells on selected first-wall differential areas. Heat loads from the entire plasma are thus determined as a function of position on the first-wall surface. Significant differences in local power loadings were found for most fusion designs, and it was therefore concluded that the effect of local power loading variations must be taken into account when calculating temperatures and heat transfer rates in fusion device first walls.