ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Vito Renda, Gianfranco Federici, Loris Papa
Fusion Science and Technology | Volume 13 | Number 3 | March 1988 | Pages 473-483
Technical Paper | Alpha-Particle Workshop / Divertor System | doi.org/10.13182/FST88-A25125
Articles are hosted by Taylor and Francis Online.
The latest Joint Research Centre (JRC)-Ispra proposal is presented to support the design of a divertor concept that has long been considered the most crucial component of the plasma impurity control system for the Next European Torus (NET) tokamak fusion reactor. Because of the harsh tokamak environment, the divertor panel is the plasma facing component that suffers the most severe loading conditions, such as high thermal stresses, thermal fatigue, severe erosion rates, and neutron damage. An analysis of a new divertor panel concept has evolved from the previous studies carried out at JRC-Ispra. The materials considered in this study are AISI 316 stainless steel for the cooling tubes, pure copper for the heat sink, and W-5 Re alloy or graphite for the protective armor. The panel is cooled by pressurized water circulating in U-tubes. A preliminary thermohydraulic analysis has been carried out to evaluate a set of reference parameters, such as optimum coolant velocity, maximum outlet water temperature, convective heat exchange coefficient, and the expected pressure drops in the channels. Thermal and mechanical calculations, performed by using the finite element technique, showed encouraging results about the engineering feasibility of the pressure boundary of the divertor for loading conditions similar to those of NET double null, assumed as the reference mainframe.