ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
A. Rene Raffray, Myron A. Hoffman
Fusion Science and Technology | Volume 10 | Number 3 | November 1986 | Pages 1640-1645
Solid Breeder Blanket | doi.org/10.13182/FST86-A24967
Articles are hosted by Taylor and Francis Online.
A thermal-hydraulic design study of the proposed ESPRESSO blanket for the Tandem Mirror Fusion Reactor is presented. Two solid breeder/multiplier configurations have been selected for the study: one with natural Li2O as solid breeder and no neutron multiplier and the other with 30% enriched gamma-LiAlO2 as solid breeder and Be as multiplier. A systematic procedure has been developed which effectively reduces the number of independent parameters to two, namely the neutron first wall loading and the main flow bulk temperature rise. Their effect on the maximum multiplier and breeder temperatures and on the pumping power ratio is investigated. Maximum allowable breeder and multiplier temperature constraints limit the design choice and a design point has been obtained for each case for a given maximum allowable pumping power ratio.