ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
PPPL-led STELLAR-AI to advance fusion research
Princeton Plasma Physics Laboratory is leading a new initiative with the goal of using AI technology to accelerate the development of fusion energy research through high-fidelity computer simulations. The project includes national laboratories, universities, technology companies, and other partners.
Simulation, Technology, and Experiment Leveraging Learning-Accelerated Research enabled by AI (STELLAR-AI) has been developed as part of the Department of Energy’s Genesis Mission, which was established by presidential executive order last year to speed up the application of AI in scientific research.
A. Rene Raffray, Myron A. Hoffman
Fusion Science and Technology | Volume 10 | Number 3 | November 1986 | Pages 1264-1269
Inertial Confinement Fusion Target and Reaction Chamber Technology | doi.org/10.13182/FST86-A24905
Articles are hosted by Taylor and Francis Online.
This research relates to the multiple liquid-lithium-jet blanket concept for the HYLIFE inertial-confinement fusion (ICF) reactor. The fusion micro-explosion would result in part of the liquid lithium being propelled towards the vacuum chamber wall where the resulting impact would cause high peak stresses. In an attempt to reduce these peak stresses, it was proposed to set up an array of bars between the vacuum vessel first wall and the liquid jets so that part of the liquid momentum would be removed as the liquid passed through the bars. A series of small-scale scoping experiments were run to obtain a preliminary evaluation of the effectiveness of such rod arrays in removing momentum from impinging liquid slugs. The impact force of an unconfined cylindrical water jet on in-line and staggered rod arrays was measured. The results indicate that the fraction of momentum removed from liquid slugs could probably exceed 18% for a staggered rod arrangement in the HYLIFE reactor.