ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Jeffrey A. Koch, Thomas P. Bernat, Gilbert W. Collins, Bruce A. Hammel, Andrew J. MacKinnon, Charles H. Still, James D. Sater, Donald N. Bittner
Fusion Science and Technology | Volume 43 | Number 1 | January 2003 | Pages 55-66
Technical Paper | doi.org/10.13182/FST03-A249
Articles are hosted by Taylor and Francis Online.
Targets for future laser-fusion ignition experiments will consist of a frozen deuterium-tritium ice layer adhering to the inner surface of a spherical shell, and the specifications for the inner surface quality of this ice layer are extremely demanding. We have developed a numerical raytrace model in order to validate backlit optical shadowgraphy as an ice-surface diagnostic, and we have used the code to simulate shadowgraph data obtained from mathematical ice layers having known modal imperfections. We find that backlit optical shadowgraphy is a valid diagnostic of the mode spectrum of ice-surface imperfections for mode numbers as high as 80 provided the experimental data are analyzed appropriately. We also describe alternative measurement techniques, which may be more sensitive than conventional backlit shadowgraphy.