ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
B. A. Engholm
Fusion Science and Technology | Volume 4 | Number 2 | September 1983 | Pages 381-386
Neutronics and Shielding | doi.org/10.13182/FST83-A22894
Articles are hosted by Taylor and Francis Online.
Neutronics analysis for the TFTR Lithium Blanket Module (LBM) design included 1-D, 2-D, and 3-D exploratory calculations culminating in reference noncoupled and coupled Monte Carlo calculations of fluxes, tritium production, and foil responses throughout the module for both D-T and D-D plasmas. ,Neutron flux and tritium production were shown to be quite flat across the module, validating the choice of a 10-cm-radius central test region. A Monte Carlo perturbation routine was extensively used for modeling studies. The front-face fusion fluence and central region tritium production can be calculated to better than ±15% uncertainty overall.