ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
BWRX-300 SMR passes U.K. regulatory milestone
GE Vernova Hitachi Nuclear Energy’s BWRX-300 small modular reactor has completed the second step of the generic design assessment (GDA) process in the United Kingdom. In this step, the U.K. Office for Nuclear Regulation, the Environment Agency, and Natural Resources Wales did not identify “any fundamental safety, security safeguard or environmental protection shortfalls with the design of the BWRX-300.” Step 1 was completed in December 2024.
Oleg I. Buzhinskij, Yuri M. Semenets
Fusion Science and Technology | Volume 32 | Number 1 | August 1997 | Pages 1-13
Technical Paper | First-Wall Technology | doi.org/10.13182/FST97-A19875
Articles are hosted by Taylor and Francis Online.
A review of some characteristic features of the boronization process, properties of boron-carbon films, and the influence of these features on tokamak discharges is presented. Boronization, as defined here, is a plasma chemical vapor deposition of a thin a-B/C:H film on the first wall of fusion reactors. As a result of boronization, oxygen, carbon, and heavy impurities (e.g., iron, nickel, and chromium) are suppressed, and hydrogen recycling is reduced, which substantially improves the characteristics of tokamak discharges. A two-stage complex protection of both the first wall by boronization and of limiters, divertor plates, and radio-frequency antennas by the application of thick B4C coatings provides further improvement of tokamak plasma parameters.