ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
Latest News
ANS joins others in seeking to discuss SNF/HLW impasse
The American Nuclear Society joined seven other organizations to send a letter to Energy Secretary Christopher Wright on July 8, asking to meet with him to discuss “the restoration of a highly functioning program to meet DOE’s legal responsibility to manage and dispose of the nation’s commercial and legacy defense spent nuclear fuel (SNF) and high-level radioactive waste (HLW).”
Oleg I. Buzhinskij, Yuri M. Semenets
Fusion Science and Technology | Volume 32 | Number 1 | August 1997 | Pages 1-13
Technical Paper | First-Wall Technology | doi.org/10.13182/FST97-A19875
Articles are hosted by Taylor and Francis Online.
A review of some characteristic features of the boronization process, properties of boron-carbon films, and the influence of these features on tokamak discharges is presented. Boronization, as defined here, is a plasma chemical vapor deposition of a thin a-B/C:H film on the first wall of fusion reactors. As a result of boronization, oxygen, carbon, and heavy impurities (e.g., iron, nickel, and chromium) are suppressed, and hydrogen recycling is reduced, which substantially improves the characteristics of tokamak discharges. A two-stage complex protection of both the first wall by boronization and of limiters, divertor plates, and radio-frequency antennas by the application of thick B4C coatings provides further improvement of tokamak plasma parameters.