ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
From operator to entrepreneur: David Garcia applies outage management lessons
David Garcia
If ComEd’s Zion plant in northern Illinois hadn’t closed in 1998, David Garcia might still be there, where he got his start in nuclear power as an operator at age 24.
But in his ninth year working there, Zion closed, and Garcia moved on to a series of new roles—including at Wisconsin’s Point Beach plant, the corporate offices of Minnesota’s Xcel Energy, and on the supplier side at PaR Nuclear—into an on-the-job education that he augmented with degrees in business and divinity that he sought later in life.
Garcia started his own company—Waymaker Resource Group—in 2014. Recently, Waymaker has been supporting Holtec’s restart project at the Palisades plant with staffing and analysis. Palisades sits almost exactly due east of the fully decommissioned Zion site on the other side of Lake Michigan and is poised to operate again after what amounts to an extended outage of more than three years. Holtec also plans to build more reactors at the same site.
For Garcia, the takeaway is clear: “This industry is not going away. Nuclear power and the adjacent industries that support nuclear power—and clean energy, period—are going to be needed for decades upon decades.”
In July, Garcia talked with Nuclear News staff writer Susan Gallier about his career and what he has learned about running successful outages and other projects.
A. Litnovsky, M. Matveeva, D. L. Rudakov, C. P. Chrobak, S. L. Allen, A. W. Leonard, P. L. Taylor, C. P. C. Wong, B. W. N. Fitzpatrick, J. W. Davis, A. A. Haasz, P. C. Stangeby, U. Breuer, V. Philipps, S. Möller
Fusion Science and Technology | Volume 62 | Number 1 | July-August 2012 | Pages 97-103
Diagnostics | Proceedings of the Fifteenth International Conference on Fusion Reactor Materials, Part A: Fusion Technology | doi.org/10.13182/FST12-A14119
Articles are hosted by Taylor and Francis Online.
Thermo-oxidation is controlled exposure in an oxygen-containing atmosphere at elevated temperature and is being considered as a technique for the de-tritiation of carbon-based codeposits in ITER. In addition, unplanned oxidation may also occur during accidental air ingress. The impact of thermo-oxidation on ITER diagnostic mirrors causes concerns. A dedicated study was performed in DIII-D, where molybdenum and copper mirrors were installed in the main chamber, in the divertor, and at a location remote from the plasma and exposed for [approximately]2 hours to a mixture containing 80% helium and 20% oxygen at a total pressure of 1.27 kPa. Mirrors in the main chamber and in the divertor were exposed at 350°C to 360°C whereas the temperature of mirrors in the remote area was [approximately]160°C.Reflectivity of all mirrors was degraded after thermo-oxidation showing a decrease in the UV range from 60% to 10% for molybdenum mirrors and a 90% drop for copper mirrors at the wavelength 250 nm. The reflectivity of mirrors exposed at lower temperature was less degraded. Surface analyses revealed formation of oxides on all mirrors.In ITER, shutters planned for mirror protection are ineffective against thermo-oxidation. Nevertheless, in-situ cleaning systems planned for ITER mirrors may efficiently remove oxide layers.