ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
The top 10 states of nuclear
The past few years have seen a concerted effort from many U.S. states to encourage nuclear development. The momentum behind nuclear-friendly policies has grown considerably, with many states repealing moratoriums, courting nuclear developers and suppliers, and in some cases creating advisory groups and road maps to push deployment of new nuclear reactors.
Shinji Ebara, Takehiko Yokomine, Akihiko Shimizu
Fusion Science and Technology | Volume 50 | Number 4 | November 2006 | Pages 538-545
Technical Paper | doi.org/10.13182/FST06-A1277
Articles are hosted by Taylor and Francis Online.
So as to make the most of an available irradiation test volume of the gas-cooled high-flux test module of the International Fusion Materials Irradiation Facility, the vessel of the test module is supposed to have a rectangular shape, into which specimens can be packed spatially efficiently. There is a large pressure difference of several atmospheric pressures between the inside and the outside of the vessel because gaseous helium flows inside the vessel to control the temperature of the specimens and a low-vacuum condition is kept outside the vessel for safety reasons. This pressure difference is assumed to cause readily the deformation of the vessel wall. Even a slight deformation should be taken seriously because the deformation of the vessel noticeably affects the coolant flow, that is, cooling performance. In this study, we performed elastoplastic finite element analysis for two rectangular vessels of the high-flux test module proposed by FZK and Kyushu University. In addition to the material nonlinearity, by taking into account the geometrical nonlinearity and thermal stress, we could obtain detailed results such as relations between the deformations and the pressure differences.