ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Sarah Davis (Univ of Tennessee, Knoxville), Robert C. Duckworth, Michelle K. Kidder, Tolga Aytug (ORNL)
Proceedings | Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technolgies (NPIC&HMIT 2019) | Orlando, FL, February 9-14, 2019 | Pages 1707-1719
Nuclear power plants (NPPs) are operating beyond their original 40-year operating lifetime, with more than 80% operating on the first license renewal for an extended 20-years. To sustain the effective and cost-effective operation of their electrical cables, understanding cable material performance in current and future environments can lead to effective maintenance strategies and condition monitoring protocols. Addressing the issue of long-term operation and viability, accelerated aging was carried out on chlorosulfonated polyethylene (CSPE) / ethylene propylene rubber (EPR) insulations that were removed from harvested electrical cables. Cables were obtained as part of the Light Water Reactor and Sustainability (LWRS) Zion Harvesting Project in cooperation with Energy Solutions and the U.S. NRC. Zion NPP was in operation for 25 years prior to decommissioning before its 40-year operation license had expired. For the Boston Insulated Wire (BIW) manufactured EPR insulation with outer CSPE jackets, degradation was observed in mechanical properties with respect to time and temperature was observed. This degradation was impacted by the outer CSPE jacket as the increase in to the time to degradation at the same temperature was observed for EPR insulations with the outer CSPE jacket removed prior to aging. The correlation of IM and density to EAB also suggested that these parameters could also be used effectively in the estimates of activation energy with additional data. Arrhenius analysis on the mechanical degradation as measured by EAB for the two types of BIW EPR insulations with outer CSPE jackets estimated activation energies slightly different (BIW-A without outer CSPE jacket 1.58 eV, BIW-B with outer CSPE jacket 1.10 eV) than the 1.24 eV found in from analysis of EAB data found in Zion NPP BIW insulation documentation. These values were higher than those previously reported of 0.90 eV to 0.96 eV for CSPE and EPR materials in the literature and additional measurements are needed to further validate the increase in activation energy for these harvested materials and possible impact on remaining useful life estimation. Finally, FTIR analysis showed differences in the oxidation as measured by decrease in C-H bonds in EPR insulation and CSPE jackets and increase in C-O bonds in certain cases.