ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Miltiadis Alamaniotis (Univ of Texas at San Antonio)
Proceedings | Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technolgies (NPIC&HMIT 2019) | Orlando, FL, February 9-14, 2019 | Pages 1691-1697
In this work a new methodology for monitoring reactor systems is introduced and its application on pressurized water reactor (PWR) data is presented. The methodology implements a synergistic framework of various relevance vector machines and fuzzy inference. The goal of the framework is to fuse the sensor readings and provide them in a solid form to the operator: this solid form is identified as the state of the reactor. Initially, each of the relevance vector machines fuses the data taken from a specific set of sensors, which have been assigned to it. In the next step, the fused data in the form of a nominal value are forwarded to a fuzzy inference system that takes the values of all the relevance vector machines and further fuses the data by providing a single value that matches the state of the reactor. This proposed methodology is applied on a set of real-world data taken from the LOFT Facility, which is a setup to simulate a pressurized water reactor. Results demonstrate the efficiency of the method in identifying the correct reactor state, while reducing the volume of processing data.