ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Mirion announces appointments
Mirion Technologies has announced three senior leadership appointments designed to support its global nuclear and medical businesses while advancing a company-wide digital and AI strategy. The leadership changes come as Mirion seeks to advance innovation and maintain strong performance in nuclear energy, radiation safety, and medical applications.
Mohamed Zaghloul, Sheng Huang, Mohan Wang, Kevin Chen, (Univ of Pittsburgh), Paul Ohodnicki, Michael Burie, Shiwoo Lee (National Energy Technology Lab), Cyril Hnatovsky, Dan Grobnic, Stephen Mihailov (National Research Council Canada), Ming-Jun Li (Corning Research and Development Corp.), David Carpenter, Lin Wen Hu (MIT), Joshua Daw (INL), invited
Proceedings | Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technolgies (NPIC&HMIT 2019) | Orlando, FL, February 9-14, 2019 | Pages 1324-1329
This paper presents experimental results of both fiber Bragg grating point-sensors and spatially-distributed fiber sensors fabricated by the ultrafast laser for high-temperature radiation environments for both fossil fuel and nuclear energy applications. Using point-by-point fabrication, the ultrafast laser was used to fabricate enhanced Rayleigh scattering profiles in radiation hardened fibers for distributed sensing. Using a phase mask approach, fiber Bragg grating sensors were produced for point temperature measurements. Both distributed fiber sensors and fiber Bragg grating sensors were used to perform real-time temperature profile measurements during operations of solid oxide fuel cells and during operation of a 6 MW nuclear research reactor. Test results presented in this paper demonstrated that both sensors can survive harsh environments of high temperatures to perform temperature profile measurements with high spatial resolutions.