ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Jose I. Aizpurua, Brian G. Stewart, Stephen D. J. McArthur (Univ of Strathclyde), Nitin Jajware (Bruce Power), Martin Kearns (EdF Energy), Sarajit Banerjee (Kinectrics Inc)
Proceedings | Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technolgies (NPIC&HMIT 2019) | Orlando, FL, February 9-14, 2019 | Pages 1222-1231
Power cables are critical assets for the reliable and cost-effective operation of nuclear power plants. The unexpected failure of a power cable can lead to lack of export capability or even to catastrophic failures depending on the plant response to the cable failure and associated circuit. Prognostics and health management (PHM) strategies examine the health of the cable periodically to identify early indicators of anomalies, diagnose faults, and predict the remaining useful life. Traditionally, PHM-related strategies for power cables are considered separately with the associated penalties involved with this decision. Namely, there is a lack of consideration of the interactions and correlations between failure modes and PHM tests, which results in scalability issues of ad-hoc experiments, and accordingly incapability to exploit the full potential for PHM strategies in an effective manner. An effective and flexible PHM strategy should be able to consider not only different PHM strategies independently, but also it should be able to fuse these tests into a cable health state indicator. The main contribution of this paper is the proposal of a PHM-oriented data analytics framework for medium voltage power cable lifetime management which incorporates anomaly detection, diagnostics, prognostics, and health index modules. This framework includes the characterization of existing data sources and PHM-oriented data analytics for cable condition monitoring. This process enables the creation of a database of existing datasets, identification of complementary PHM techniques for an improved condition monitoring, and implementation of an end-to-end PHM framework.