ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
Kevin Agarwal, Marat Khafizov (Ohio State), Robert Schley, Colby Jensen, David Hurley (INL), Nirmala Kandadai, Harish Subbaraman (Boise State Univ)
Proceedings | Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technolgies (NPIC&HMIT 2019) | Orlando, FL, February 9-14, 2019 | Pages 1028-1036
The objective of this paper is to present preliminary thermal and imaging analysis of infrared thermography applied for crack detection in nuclear fuel. Cracking of nuclear fuel has notable implications on the fuel performance. Cracks provide a pathway for faster fission gas release and buildup of pressure inside the fuel rod. Crack induced relocation of fuel results in pellet cladding mechanical interaction. Lastly the fragmentation of the fuel under severe thermal stress leads to loss of fuel ability to maintain coolable geometry. The aforementioned phenomena impact the life time of the fuel. In-pile detection of the solid material cracking will allow for better understanding of the fuel’s thermo-mechanical behavior and allow validation and development of fuel performance codes. In this report, we summarize the result of the modeling efforts to identify an optimal configuration for infrared thermography for detecting structural evolution of the fuel such cracking. Similar approaches can be further expanded and consider fuel void formation, relocation and pellet claddinh interaction. In this modeling effort, various heater configurations including source and geometry as well as ambient temperature conditions were considered. For sources of heating: internal heat generation by fission or gamma rays and external surface heating by a laser were considered. For the external heater geometry, the condition of uniform and point source surface heater were analyzed. A free space setup implementing IR camera with lock-in detection capability has been identified as a first step for achieving in-pile implementation. The ability to detect cracks in-pile will open up possibilities for further advancements in fuel performance.