ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
A. J. Palmer, R. S. Skifton, D. C. Haggard, W. D. Swank (INL), M. Scervini (Univ of Cambridge)
Proceedings | Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technolgies (NPIC&HMIT 2019) | Orlando, FL, February 9-14, 2019 | Pages 1013-1027
High-temperature gas reactor experiments create unique challenges for thermocouple-based temperature measurements. High-temperature industrial thermocouples suffer rapid decalibration due to transmutation of the thermoelements from neutron absorption. For lower temperature applications, Type K and Type N thermocouples are affected by neutron irradiation only to a limited extent. But until recently, the use of these nickel-based thermocouples was limited when the temperature exceeds 1050°C due to drift related to phenomena other than nuclear irradiation. Certain portions of the final Advanced Gas Reactor test (AGR-5/6/7) will experience temperatures higher than any of the previous AGR tests, up to 1450°C. Recognizing the limitations of existing thermometry to measure such high temperatures, the sponsor of the AGR-5/6/7 test supported a development and testing program for thermocouples capable of low-drift operation at temperatures above 1100°C. This program included additional development of high-temperature irradiation-resistant thermocouples (HTIR-TCs) based on molybdenum/niobium thermoelements, which have been studied at INL since circa 2004. A step change in accuracy and long-term stability of this thermocouple type has been achieved as part of the AGR-5/6/7 thermometry development program. Additionally, long term testing (7000+ hrs) at 1250°C of Type N thermocouples utilizing a customized sheath developed at the University of Cambridge has been completed with excellent low-drift results. The results of this testing as well as testing of the improved HTIR design are reported herein. Both the improved HTIR and the Cambridge Type N thermocouple types have been incorporated into the AGR-5/6/7 test, which began irradiation February 2018.