ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Argonne creates new methodology for digital twins
Hu
Argonne National Laboratory has added a new twist to digital twin technology for research into nuclear energy. According to Rui Hu, a principal nuclear engineer at Argonne, “Our digital twin technology introduces a significant step toward understanding and managing advanced nuclear reactors, enabling us to predict and respond to changes with the required speed and accuracy.”
The research of Hu and his colleagues, “Development of Whole System Digital Twins for Advanced Reactors: Leveraging Graph Neural Networks and SAM Simulations,” was published in the American Nuclear Society journal Nuclear Technology.
Virtual representation: A digital twin technology is an accurate virtual representation of a complex system. It is updated with real-time data from sensors applied to the physical system, such as a nuclear reactor.
A. J. Palmer, R. S. Skifton, D. C. Haggard, W. D. Swank (INL), M. Scervini (Univ of Cambridge)
Proceedings | Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technolgies (NPIC&HMIT 2019) | Orlando, FL, February 9-14, 2019 | Pages 1013-1027
High-temperature gas reactor experiments create unique challenges for thermocouple-based temperature measurements. High-temperature industrial thermocouples suffer rapid decalibration due to transmutation of the thermoelements from neutron absorption. For lower temperature applications, Type K and Type N thermocouples are affected by neutron irradiation only to a limited extent. But until recently, the use of these nickel-based thermocouples was limited when the temperature exceeds 1050°C due to drift related to phenomena other than nuclear irradiation. Certain portions of the final Advanced Gas Reactor test (AGR-5/6/7) will experience temperatures higher than any of the previous AGR tests, up to 1450°C. Recognizing the limitations of existing thermometry to measure such high temperatures, the sponsor of the AGR-5/6/7 test supported a development and testing program for thermocouples capable of low-drift operation at temperatures above 1100°C. This program included additional development of high-temperature irradiation-resistant thermocouples (HTIR-TCs) based on molybdenum/niobium thermoelements, which have been studied at INL since circa 2004. A step change in accuracy and long-term stability of this thermocouple type has been achieved as part of the AGR-5/6/7 thermometry development program. Additionally, long term testing (7000+ hrs) at 1250°C of Type N thermocouples utilizing a customized sheath developed at the University of Cambridge has been completed with excellent low-drift results. The results of this testing as well as testing of the improved HTIR design are reported herein. Both the improved HTIR and the Cambridge Type N thermocouple types have been incorporated into the AGR-5/6/7 test, which began irradiation February 2018.