ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
DOE-NE’s newest fuel consortium includes defense from antitrust laws
The Department of Energy's Office of Nuclear Energy is setting up a nuclear fuel Defense Production Act Consortium that will seek voluntary agreements with interested companies “to increase fuel availability, provide more access to reliable power, and end America’s reliance on foreign sources of enriched uranium and critical materials needed to power the nation’s nuclear renaissance.” According to an August 22 DOE press release, the plan invokes the Defense Production Act (DPA) to give consortium members “defense from antitrust laws when certain criteria are met” and “allow industry consultation to develop plans of action.” DOE-NE is looking for interested companies to join the consortium ahead of its first meeting, scheduled for October 14.
A. J. Palmer, R. S. Skifton, D. C. Haggard, W. D. Swank (INL), M. Scervini (Univ of Cambridge)
Proceedings | Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technolgies (NPIC&HMIT 2019) | Orlando, FL, February 9-14, 2019 | Pages 1013-1027
High-temperature gas reactor experiments create unique challenges for thermocouple-based temperature measurements. High-temperature industrial thermocouples suffer rapid decalibration due to transmutation of the thermoelements from neutron absorption. For lower temperature applications, Type K and Type N thermocouples are affected by neutron irradiation only to a limited extent. But until recently, the use of these nickel-based thermocouples was limited when the temperature exceeds 1050°C due to drift related to phenomena other than nuclear irradiation. Certain portions of the final Advanced Gas Reactor test (AGR-5/6/7) will experience temperatures higher than any of the previous AGR tests, up to 1450°C. Recognizing the limitations of existing thermometry to measure such high temperatures, the sponsor of the AGR-5/6/7 test supported a development and testing program for thermocouples capable of low-drift operation at temperatures above 1100°C. This program included additional development of high-temperature irradiation-resistant thermocouples (HTIR-TCs) based on molybdenum/niobium thermoelements, which have been studied at INL since circa 2004. A step change in accuracy and long-term stability of this thermocouple type has been achieved as part of the AGR-5/6/7 thermometry development program. Additionally, long term testing (7000+ hrs) at 1250°C of Type N thermocouples utilizing a customized sheath developed at the University of Cambridge has been completed with excellent low-drift results. The results of this testing as well as testing of the improved HTIR design are reported herein. Both the improved HTIR and the Cambridge Type N thermocouple types have been incorporated into the AGR-5/6/7 test, which began irradiation February 2018.