ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Jacob A. Farber, Daniel G. Cole (Univ of Pittsburgh)
Proceedings | Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technolgies (NPIC&HMIT 2019) | Orlando, FL, February 9-14, 2019 | Pages 868-878
In the nuclear power industry, one important class of accidents is the loss of coolant accident (LOCA). This paper presents methods to detect a LOCA that is initiated: (i) while the plant is going through a small transient, and (ii) with a time-varying leak magnitude. The accident is simulated using a generic pressurized water reactor (GPWR) simulator. The fault is detected using a model-based approach with models identi ed using GPWR data. The model-based approach is multiple-model adaptive estimation (MMAE), which uses multiple system models representing both normal and faulted operating conditions. During operation, these models simulate the potential operating conditions, incorporating measurement feedback in a Kalman lter state-estimation structure. Faults are detected by selecting the model that most closely matches the system according to statistical characteristics. For a LOCA, data-driven models of the pressurizer liquid level are derived using rst-principles and system identi cation. In system identi cation, a physics-based model form is derived that contains unknown parameters. System identi cation is then used to estimate the parameter values based on measurement data, providing plant-speci c pressurizer models. For the accident scenario described above, the proposed methods di erentiate between the transient and the accident, and provide real-time estimates of the leak magnitude after it has been initiated.