ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Kurt Davis, Richard Skifton Josh Daw, Troy Unruh, Ashley Lambson, Pattrick Calderoni (INL)
Proceedings | Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technolgies (NPIC&HMIT 2019) | Orlando, FL, February 9-14, 2019 | Pages 602-611
The use of X-ray inspection has evolved into an integral process to aid in the design and testing of in-pile instrumentation. Two types of X-ray inspection, three dimensional computed tomography (3D CT) and radioscopy, have been employed at the Idaho National Laboratory (INL) High Temperature Test Laboratory (HTTL). Early in the development of the high temperature irradiation resistant thermocouple (HTIR TC), radioscopy, which produces a two dimensional X-ray image or digital radiograph, was key in development of the HTIR TC. Radiographs were originally produced using an image intensifier linked to a CCD camera. Later upgrades to the radioscopy process replaced the image intensifier and CCD camera with a flat panel detector. With the increased dynamic range of the flat panel detector, additional discoveries were made about the performance of the HTIR TC. Three dimensional computed tomography is a recent tool added to the arsenal of nondestructive evaluations performed at the HTTL. This capability has enabled the development of new in-pile instrumentation to a level that would not have been achievable without this X-ray inspection process. Examples include the diamond temperature sensor, the transient hot wire thermal conductivity probe, the ultrasonic thermometer and the micro pocket fission detector. This paper will discuss the evolution X-ray inspections at the HTTL and their contribution to the development of in-pile instrumentation.