ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Young Do Koo, Ju Hyun Back, Man Gyun Na (Chosun Univ)
Proceedings | Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technolgies (NPIC&HMIT 2019) | Orlando, FL, February 9-14, 2019 | Pages 440-447
If the undesired situations such as a transient or an accident improperly affecting normal operation occur in nuclear power plants (NPPs), accurately checking the NPP state by the operators using temporary trends of several instrumentation signals in a short time can be constrained. Therefore, this study was carried out to provide the transient identification information to the operators in a short time after the reactor trip according to the abnormal circumstance occurrence using the deep learning since the diagnosis of the NPP states is prior for effective accident management. To establish the deep learning model identifying the initial events of the NPPs, the simulated accident data were applied to train the deep learning model. These data were obtained by simulating the postulated scenarios using the modular accident analysis program (MAAP). The data from the MAAP code are used to calculate the time-integrated values of the simulated instrumentation signals. That is, the deep learning model is trained to find the optimized classifier to identify the events using the simulated signals of the accident data showing the behaviors of each accident circumstance. Utilized simulated signals were considered as some of the highly correlative accident monitoring variables. In this study, deep neural networks (DNNs) were used for identifying the transients of the NPPs. The identification performance of the DNN model, and moreover the support vector machine (SVM) model in the previous study is able to be checked in this paper. In addition, performance of the artificial intelligence methods as advanced technologies monitoring and diagnosing the NPP states can be assessed.