ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Miltiadis Alamaniotis (Univ of Texas at San Antonio), Asok Ray (Penn State)
Proceedings | Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technolgies (NPIC&HMIT 2019) | Orlando, FL, February 9-14, 2019 | Pages 431-439
Monitoring of Boiling Water Rectors (BWRs) is a complex process that requires the use of a numerous sensors and systems. Acquisition of data and the subsequent processing of it accommodate inference making with regard to the state of the reactor system. System identification promotes decision making with regard to operation action taking. In this paper, we present a new method for serially integrating two machine learning tools and more specifically a neural network and a set of algorithms for learning Gaussian processes. Both sets of tools exhibit learning capabilities, and their integration in the current work offers a two-stage learning schema applied to identification of transient states in BWR. In particular, the proposed methodology utilizes the synergism of a set of Gaussian processes with a feedforward neural network for recognizing the type of loss of coolant accident (LOCA) that occurs in the reactor. The methodology is tested on a set of real-world datasets taken from the FIX-II facility. Results demonstrate efficacy of the method to accurately identify the occurring LOCA among three possible states.