ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
DOE-NE’s newest fuel consortium includes defense from antitrust laws
The Department of Energy's Office of Nuclear Energy is setting up a nuclear fuel Defense Production Act Consortium that will seek voluntary agreements with interested companies “to increase fuel availability, provide more access to reliable power, and end America’s reliance on foreign sources of enriched uranium and critical materials needed to power the nation’s nuclear renaissance.” According to an August 22 DOE press release, the plan invokes the Defense Production Act (DPA) to give consortium members “defense from antitrust laws when certain criteria are met” and “allow industry consultation to develop plans of action.” DOE-NE is looking for interested companies to join the consortium ahead of its first meeting, scheduled for October 14.
Jae Min Kim, Gyumin Lee, Seung Jun Lee (UNIST)
Proceedings | Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technolgies (NPIC&HMIT 2019) | Orlando, FL, February 9-14, 2019 | Pages 422-430
Nuclear power plants have abnormal operating procedures to prepare abnormal events occurring. An operator should choose and follow the appropriate procedure according to alarms and plant parameters which indicate the plant state. However, with enormous information, it is sometimes hard for the operators to judge the plant state in a short period of time. In the field, the skilled operators are well trained in the entry conditions of the abnormal operating procedures, so that they can quickly select a procedure that is appropriate to the current situation. Nevertheless, this task has a potential risk for less skilled operators to make mistakes of the judgement, which would result in response time delayed. Therefore, this paper suggests nuclear power plants abnormality diagnosis algorithm to support the judgement. This paper covers two of three steps to develop the diagnosis system; setting the training data production environment by analyzing the abnormal operating procedures and comparison between deep learning algorithms using the convolutional and recurrent neural networks. The abnormal operating data were generated from the nuclear power plant simulator. In addition, to reduce the dimensionality of the data, principal component analysis was used as data preprocessing. The algorithm is expected to reduce work load of the operators by providing selection of the proper procedure in a short time with high accuracy.