ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Michael Pietrykowski, Carol Smidts (Ohio State)
Proceedings | Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technolgies (NPIC&HMIT 2019) | Orlando, FL, February 9-14, 2019 | Pages 296-307
Hardware-in-the-loop test configurations require real-time execution speeds from their simulation components for best results. Slower-than-real-time simulations can degrade test result accuracy, completely invalidate a test, and potentially even damage the hardware component being tested; however, some simulations required for testing cannot be guaranteed to run in real time or faster-than-real-time. Thus, we developed a method to allow slower-than-real-time simulations to be used in HIL test setups. Input signals to the simulation are predicted using a simplified hardware model. The simulation uses these predicted values to run “ahead” of the hardware component in time. When a sufficient time margin is obtained, depending on the actual execution speed of the simulation, the hardware component is connected to the stored simulation results computed using the predicted inputs from the hardware model and the test commences. Simulation results are supplied to the hardware component in real time, for as long as the simulation time margin remains. A case study using a small modular reactor simulation code shows that using this method allows test lengths at least 350% longer and simulation error of 0.6% compared to 36%.