ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Michael Pietrykowski, Carol Smidts (Ohio State)
Proceedings | Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technolgies (NPIC&HMIT 2019) | Orlando, FL, February 9-14, 2019 | Pages 296-307
Hardware-in-the-loop test configurations require real-time execution speeds from their simulation components for best results. Slower-than-real-time simulations can degrade test result accuracy, completely invalidate a test, and potentially even damage the hardware component being tested; however, some simulations required for testing cannot be guaranteed to run in real time or faster-than-real-time. Thus, we developed a method to allow slower-than-real-time simulations to be used in HIL test setups. Input signals to the simulation are predicted using a simplified hardware model. The simulation uses these predicted values to run “ahead” of the hardware component in time. When a sufficient time margin is obtained, depending on the actual execution speed of the simulation, the hardware component is connected to the stored simulation results computed using the predicted inputs from the hardware model and the test commences. Simulation results are supplied to the hardware component in real time, for as long as the simulation time margin remains. A case study using a small modular reactor simulation code shows that using this method allows test lengths at least 350% longer and simulation error of 0.6% compared to 36%.