ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
DOE awards $2.7B for HALEU and LEU enrichment
Yesterday, the Department of Energy announced that three enrichment services companies have been awarded task orders worth $900 million each. Those task orders were given to American Centrifuge Operating (a Centrus Energy subsidiary) and General Matter, both of which will develop domestic HALEU enrichment capacity, along with Orano Federal Services, which will build domestic LEU enrichment capacity.
The DOE also announced that it has awarded Global Laser Enrichment an additional $28 million to continue advancing next generation enrichment technology.
Michael Pietrykowski, Carol Smidts (Ohio State)
Proceedings | Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technolgies (NPIC&HMIT 2019) | Orlando, FL, February 9-14, 2019 | Pages 296-307
Hardware-in-the-loop test configurations require real-time execution speeds from their simulation components for best results. Slower-than-real-time simulations can degrade test result accuracy, completely invalidate a test, and potentially even damage the hardware component being tested; however, some simulations required for testing cannot be guaranteed to run in real time or faster-than-real-time. Thus, we developed a method to allow slower-than-real-time simulations to be used in HIL test setups. Input signals to the simulation are predicted using a simplified hardware model. The simulation uses these predicted values to run “ahead” of the hardware component in time. When a sufficient time margin is obtained, depending on the actual execution speed of the simulation, the hardware component is connected to the stored simulation results computed using the predicted inputs from the hardware model and the test commences. Simulation results are supplied to the hardware component in real time, for as long as the simulation time margin remains. A case study using a small modular reactor simulation code shows that using this method allows test lengths at least 350% longer and simulation error of 0.6% compared to 36%.