ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Al-Amin Ahmed Simon, Karishmae Kadrager, Baharceh Badamchi, Harish Subbaraman, Maria Mitkova (Boise State Univ)
Proceedings | Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technolgies (NPIC&HMIT 2019) | Orlando, FL, February 9-14, 2019 | Pages 39-48
Temperature sensing is an integral part of any nuclear reactor facilities. However, high radiation and temperature degrade the sensing materials which in turn makes the sensors less reliable. In this paper, chalcogenide glasses are proposed as temperature sensing materials for reactor facilities. Chalcogenide glasses go through amorphous to crystalline phase transformation when heated up to their crystallization temperature. This phase transition changes both the electrical and optical properties of the chalcogenide glasses. They are amorphous in nature and radiation hard due to their specific electronic structure and high defect density. Difference in reflected power at 1310 nm and 1550 nm wavelengths as a function of temperature, from chalcogenide glass-silica interface can be utilized to measure temperature and this effect is applied in the device presented in this paper. A review of the radiation hardness and a study of thermally induced change in optical properties of Ge-containing chalcogenide glasses along with a device architecture are presented as a method for temperature monitoring in nuclear facilities.