ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Muhammad Yousaf (Purdue Univ), Shoaib Usman (Missouri S&T)
Proceedings | Advances in Thermal Hydraulics 2018 | Orlando, FL, November 11-15, 2018 | Pages 1091-1099
A lattice Boltzmann method was utilized to investigate the natural convection heat transfer in the presence of sinusoidal roughness elements in a two-dimensional rectangular cavity heated at the bottom. Coupled momentum and energy equations were solved in a two-dimensional lattice using the single relaxation time Bhatnagar-Gross-Krook (BGK) model of lattice Boltzmann method. Computational model was validated against the previous benchmark solutions and a very good agreement was found to exist with smooth and rough cavities. Numerical studies were performed for a Newtonian fluid of the Prandtl number (Pr) 1.0 in a cavity of aspect ratio (L/H) 2.0. Sinusoidal roughness elements (n = 08) were placed on hot, cold, and both the hot and cold walls simultaneously. The dimensionless amplitude was varied from 0.015 to 0.15 in small steps. The number of the roughness elements was held constant to investigate the Rayleigh numbers (Ra) between 1x103 and 1x106. The computational results showed that a small roughness amplitude of approximately 0.025 has no significant effects on the average heat transfer. In contrast, the presence of sinusoidal roughness with an amplitude ? 0.05 causes the average heat transfer to degrade and delay in the onset of the natural circulation.