ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Supreme Court rules against Texas in interim storage case
The Supreme Court voted 6–3 against Texas and a group of landowners today in a case involving the Nuclear Regulatory Commission’s licensing of a consolidated interim storage facility for spent nuclear fuel, reversing a decision by the 5th Circuit Court of Appeals to grant the state and landowners Fasken Land and Minerals (Fasken) standing to challenge the license.
Rohan Biwalkar, Sola Talabi (Pittsburgh Technical)
Proceedings | Advances in Thermal Hydraulics 2018 | Orlando, FL, November 11-15, 2018 | Pages 985-988
An Integrated Small Modular Reactor is an Integral Pressurized-Water Reactor (iPWR) with a relatively high surface-area-to-volume ratio. It has been hypothesized that a higher surface-area-to-volume ratio aids passive aerosol decontamination through various deposition phenomena, namely thermophoresis, diffusiophoresis and gravitational settling. Accordingly, particle deposition was studied within a range of thermal-hydraulic parameters, namely pressure, temperature and A/V ratios, in the presence as well as the absence of steam. It was found that an overall convective flow exists inside the Containment Vessel (CV) volume, originating due to fluid buoyancy and the temperature gradient between the Reactor Vessel (RV) and Containment Vessel walls. Computational Fluid Dynamics (CFD) simulations confirmed the existence of this convective flow, and it has experimentally been identified as a major particle transport mechanism. The convective flow also aids particle deposition due to turbulent inertial impaction on the walls. The flow velocities are at least an order of magnitude higher than the deposition velocities by phoretic phenomena; this significantly enhances the importance of the convective flow in contributing to particle transport during post-accident conditions in iPWRs.