ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
Rohan Biwalkar, Sola Talabi (Pittsburgh Technical)
Proceedings | Advances in Thermal Hydraulics 2018 | Orlando, FL, November 11-15, 2018 | Pages 985-988
An Integrated Small Modular Reactor is an Integral Pressurized-Water Reactor (iPWR) with a relatively high surface-area-to-volume ratio. It has been hypothesized that a higher surface-area-to-volume ratio aids passive aerosol decontamination through various deposition phenomena, namely thermophoresis, diffusiophoresis and gravitational settling. Accordingly, particle deposition was studied within a range of thermal-hydraulic parameters, namely pressure, temperature and A/V ratios, in the presence as well as the absence of steam. It was found that an overall convective flow exists inside the Containment Vessel (CV) volume, originating due to fluid buoyancy and the temperature gradient between the Reactor Vessel (RV) and Containment Vessel walls. Computational Fluid Dynamics (CFD) simulations confirmed the existence of this convective flow, and it has experimentally been identified as a major particle transport mechanism. The convective flow also aids particle deposition due to turbulent inertial impaction on the walls. The flow velocities are at least an order of magnitude higher than the deposition velocities by phoretic phenomena; this significantly enhances the importance of the convective flow in contributing to particle transport during post-accident conditions in iPWRs.