ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Alp Tezbasaran, Maria N. Avramova, Kostadin N. Ivanov (NCSU), Osman S. Celikten (Hacettepe Univ)
Proceedings | Advances in Thermal Hydraulics 2018 | Orlando, FL, November 11-15, 2018 | Pages 729-738
In this work, the sub-channel thermal-hydraulic code CTF is applied to the hottest fuel assembly of a VVER-1000 core, aiming to investigate the code sensitivity to uncertainties of the initial and boundary conditions. The core thermal-hydraulic solver CTF is a modernized version of the COBRA-TF sub-channel code, which is being maintained and developed by the Reactor Dynamics and Fuel Modeling Group (RDFMG) at North Carolina State University (NCSU) in cooperation with Oak Ridge National Laboratory (ORNL).
In this study, first, a full core model of a VVER-1000 reactor with its initial loading pattern is created for the Monte Carlo neutronics code MCNP6 under normal operating conditions using ENDF/B VII.1 / NJOY99. The assembly power factors and the pin-powers of the hottest fuel assembly, obtained by MCNP6, are used as power boundary conditions in CTF. The hottest assembly is simulated to calculate the fuel, cladding, and coolant temperatures at normal operating conditions.
Uncertainty analyses are performed using Dakota 6.5 and it is observed that CTF predictions of fuel, cladding, and coolant temperatures are most sensitive to uncertainties in core average power and inlet coolant temperature.