ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Blades-in turbine inspections at Quad Cities set new benchmark for Constellation
When Constellation decided to install replacement Alstom low-pressure turbines at three of its boiling water reactor plants more than 15 years ago, one benefit was knowing the new turbines should operate reliably—and without major inspections—for several years.
Alp Tezbasaran, Maria N. Avramova, Kostadin N. Ivanov (NCSU), Osman S. Celikten (Hacettepe Univ)
Proceedings | Advances in Thermal Hydraulics 2018 | Orlando, FL, November 11-15, 2018 | Pages 729-738
In this work, the sub-channel thermal-hydraulic code CTF is applied to the hottest fuel assembly of a VVER-1000 core, aiming to investigate the code sensitivity to uncertainties of the initial and boundary conditions. The core thermal-hydraulic solver CTF is a modernized version of the COBRA-TF sub-channel code, which is being maintained and developed by the Reactor Dynamics and Fuel Modeling Group (RDFMG) at North Carolina State University (NCSU) in cooperation with Oak Ridge National Laboratory (ORNL).
In this study, first, a full core model of a VVER-1000 reactor with its initial loading pattern is created for the Monte Carlo neutronics code MCNP6 under normal operating conditions using ENDF/B VII.1 / NJOY99. The assembly power factors and the pin-powers of the hottest fuel assembly, obtained by MCNP6, are used as power boundary conditions in CTF. The hottest assembly is simulated to calculate the fuel, cladding, and coolant temperatures at normal operating conditions.
Uncertainty analyses are performed using Dakota 6.5 and it is observed that CTF predictions of fuel, cladding, and coolant temperatures are most sensitive to uncertainties in core average power and inlet coolant temperature.