ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Supreme Court rules against Texas in interim storage case
The Supreme Court voted 6–3 against Texas and a group of landowners today in a case involving the Nuclear Regulatory Commission’s licensing of a consolidated interim storage facility for spent nuclear fuel, reversing a decision by the 5th Circuit Court of Appeals to grant the state and landowners Fasken Land and Minerals (Fasken) standing to challenge the license.
Divya Jyoti Prakash, Youho Lee (Univ of New Mexico)
Proceedings | Advances in Thermal Hydraulics 2018 | Orlando, FL, November 11-15, 2018 | Pages 600-611
Poor resistance to thermal shock is one of the major limiting factors for ceramic materials to be used as nuclear structural materials. Most past efforts to improve thermal shock tolerance focused on increasing material strength, thermal conductivity. As much as the material aspect of thermal shock tolerance is concerned, convective heat transfer is the other critical component for thermal shock tolerance, as it determines non-uniform temperature fields leading to thermal stresses. Our approach is to achieve thermal shock tolerance by reducing surface heat flux with surface modification. We perform a systematic study of the thermal shock experienced by the alumina during quenching by cold water droplet impingement with heated surface temperature ranging from 125°C to 475°C for Weber number ?32. Degree of thermal shock is gauged from the residual strength of material post quenching. We find clear sign of thermal shock fracture for as received hydrophilic alumina due to higher heat flux during nucleate and transition boiling mode of heat transfer. Residual strength is nearly constant for surface modified alumina due to the hydrophobic nano-fractal surface that promoted film boiling mode of heat transfer, implying significant improvement in thermal shock tolerance with reduced heat flux. This is a novel approach to reduce thermal shock by controlling the heat transfer with surface modification, different from conventional, yet expensive, method of improving the bulk material properties. The presented method of improving thermal shock tolerance can be applied to various nuclear power plant components, including turbine blades.