ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Supreme Court rules against Texas in interim storage case
The Supreme Court voted 6–3 against Texas and a group of landowners today in a case involving the Nuclear Regulatory Commission’s licensing of a consolidated interim storage facility for spent nuclear fuel, reversing a decision by the 5th Circuit Court of Appeals to grant the state and landowners Fasken Land and Minerals (Fasken) standing to challenge the license.
C. A. Nixon, W. R. Marcum, A. W. Weiss (Oregon State Univ), K. M. Steer, R. B. Jackson, M. G. Martin (TerraPower)
Proceedings | Advances in Thermal Hydraulics 2018 | Orlando, FL, November 11-15, 2018 | Pages 493-504
Presently there exist no experimental methods readily available to characterize the comprehensive motion of wire-wrapped pins for the purpose of measuring fluid structure interactions. Specifically, the dearth of capabilities lies in the need to capture pin-to-pin interactions within the bundle that do not have visual access. This study leverages upon recent previous efforts that have demonstrated the successful use of a distributed strain sensor (DSS) to characterize the motion of a single wire-wrapped pin under fluid flow and expands through use of multiple instrumented pins to characterize the simultaneous motion of pin-to-pin interaction. The outcome of this study demonstrates the direct measurement of pin-to-pin contact, rubbing and interaction over a range of relevant flow rates on a 19-pin wire-wrapped bundle.