ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Nuclear Dirigo
On April 22, 1959, Rear Admiral George J. King, superintendent of the Maine Maritime Academy, announced that following the completion of the 1960 training cruise, cadets would begin the study of nuclear engineering. Courses at that time included radiation physics, reactor control and instrumentation, reactor theory and engineering, thermodynamics, shielding, core design, reactor maintenance, and nuclear aspects.
C. A. Nixon, W. R. Marcum, A. W. Weiss (Oregon State Univ), K. M. Steer, R. B. Jackson, M. G. Martin (TerraPower)
Proceedings | Advances in Thermal Hydraulics 2018 | Orlando, FL, November 11-15, 2018 | Pages 493-504
Presently there exist no experimental methods readily available to characterize the comprehensive motion of wire-wrapped pins for the purpose of measuring fluid structure interactions. Specifically, the dearth of capabilities lies in the need to capture pin-to-pin interactions within the bundle that do not have visual access. This study leverages upon recent previous efforts that have demonstrated the successful use of a distributed strain sensor (DSS) to characterize the motion of a single wire-wrapped pin under fluid flow and expands through use of multiple instrumented pins to characterize the simultaneous motion of pin-to-pin interaction. The outcome of this study demonstrates the direct measurement of pin-to-pin contact, rubbing and interaction over a range of relevant flow rates on a 19-pin wire-wrapped bundle.