ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
C. A. Nixon, W. R. Marcum, A. W. Weiss (Oregon State Univ), K. M. Steer, R. B. Jackson, M. G. Martin (TerraPower)
Proceedings | Advances in Thermal Hydraulics 2018 | Orlando, FL, November 11-15, 2018 | Pages 493-504
Presently there exist no experimental methods readily available to characterize the comprehensive motion of wire-wrapped pins for the purpose of measuring fluid structure interactions. Specifically, the dearth of capabilities lies in the need to capture pin-to-pin interactions within the bundle that do not have visual access. This study leverages upon recent previous efforts that have demonstrated the successful use of a distributed strain sensor (DSS) to characterize the motion of a single wire-wrapped pin under fluid flow and expands through use of multiple instrumented pins to characterize the simultaneous motion of pin-to-pin interaction. The outcome of this study demonstrates the direct measurement of pin-to-pin contact, rubbing and interaction over a range of relevant flow rates on a 19-pin wire-wrapped bundle.