ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Mirion announces appointments
Mirion Technologies has announced three senior leadership appointments designed to support its global nuclear and medical businesses while advancing a company-wide digital and AI strategy. The leadership changes come as Mirion seeks to advance innovation and maintain strong performance in nuclear energy, radiation safety, and medical applications.
Mingfu He, Youho Lee (Univ of New Mexico)
Proceedings | Advances in Thermal Hydraulics 2018 | Orlando, FL, November 11-15, 2018 | Pages 449-459
The critical heat flux (CHF) sets the upper limit of efficient heat removal for pool boiling. Microstructures fabricated on a heat transfer substrate can effectively increase the limit of heat removal and delay the boiling crisis. The exact physics mechanisms behind microstructure enhancement still remain ambiguous and CHF prediction on microstructured surfaces is not well resolved even if numerous related studies and experiments have been performed. In this study, the deep belief network (DBN) is proposed to predict CHF and study parametric trends of CHF by collecting relevant CHF datasets from published papers. Performance comparisons with other four common machine learning techniques and three modified Zuber models accounting for the effects of microstructures are conducted for exploring complicated and nonlinear relation between CHF and microstructures. Different from the training process of other regression modelling problems, a special model convergence, which is defined in Subsection 3.1, is required to be incorporated into the CHF model of DBN for exhibiting accurate parametric trends of CHF and improving the prediction accuracy. Numerical results demonstrate that DBN can achieve the best performance of CHF prediction in terms of prediction accuracy. The presented methodology provides new insights for CHF modelling in pool boiling enhanced by microstructures.