ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Supreme Court rules against Texas in interim storage case
The Supreme Court voted 6–3 against Texas and a group of landowners today in a case involving the Nuclear Regulatory Commission’s licensing of a consolidated interim storage facility for spent nuclear fuel, reversing a decision by the 5th Circuit Court of Appeals to grant the state and landowners Fasken Land and Minerals (Fasken) standing to challenge the license.
Mingfu He, Youho Lee (Univ of New Mexico)
Proceedings | Advances in Thermal Hydraulics 2018 | Orlando, FL, November 11-15, 2018 | Pages 449-459
The critical heat flux (CHF) sets the upper limit of efficient heat removal for pool boiling. Microstructures fabricated on a heat transfer substrate can effectively increase the limit of heat removal and delay the boiling crisis. The exact physics mechanisms behind microstructure enhancement still remain ambiguous and CHF prediction on microstructured surfaces is not well resolved even if numerous related studies and experiments have been performed. In this study, the deep belief network (DBN) is proposed to predict CHF and study parametric trends of CHF by collecting relevant CHF datasets from published papers. Performance comparisons with other four common machine learning techniques and three modified Zuber models accounting for the effects of microstructures are conducted for exploring complicated and nonlinear relation between CHF and microstructures. Different from the training process of other regression modelling problems, a special model convergence, which is defined in Subsection 3.1, is required to be incorporated into the CHF model of DBN for exhibiting accurate parametric trends of CHF and improving the prediction accuracy. Numerical results demonstrate that DBN can achieve the best performance of CHF prediction in terms of prediction accuracy. The presented methodology provides new insights for CHF modelling in pool boiling enhanced by microstructures.