ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
Joseph L. Bottini, Sabrina Hammouti, David Ruzic, Caleb S. Brooks (Univ of Illinois)
Proceedings | Advances in Thermal Hydraulics 2018 | Orlando, FL, November 11-15, 2018 | Pages 440-448
Boiling heat transfer is an effective method for transferring heat from system components, enabling high heat transfer rates from minimal surface superheats. While it is effective, two-phase heat transfer offers added complexities to single-phase heat transfer caused by the addition of deformable interfaces, dissimilar fluid properties, and phase transition. The critical heat flux (CHF) marks the upper limit of safe operation for many boiling heat transfer systems, and its prediction is essential to ensure safe operation. While much effort has been devoted to studying boiling heat transfer and CHF, the characteristics of the surface, such as wettability and roughness, influence the boiling heat transfer, but are not well understood. Heat transfer surfaces of varying wettability and roughness have been prepared, characterized, and subjected to flow experiments up to CHF to study the role the surface properties have in flow boiling heat transfer. The surfaces were prepared using a high-power laser to texture the surface altering the wettability and roughness. Increasing the roughness and decreasing the wettability are found to have competing effects on both the boiling curves and the CHF points. The onset of nucleate boiling (ONB) points are delayed for the lesswetting surfaces, and the CHF value is lower. An increase in roughness for the textured surface causes earlier ONB and increases CHF, but the CHF values are lower than for the original, polished surface. The roughness and wettability are demonstrated to be influential properties on both the boiling heat transfer and the CHF point, and are not well captured by the existing CHF models.