ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Dong Zheng, Julie M. Jarvis, Serena Allison-Ptak, Gregory Brauer, Michael Hopman (Bechtel NS&E)
Proceedings | Advances in Thermal Hydraulics 2018 | Orlando, FL, November 11-15, 2018 | Pages 355-364
This paper determines the hydrogen generated during the course of a severe accident in one reactor unit with crossflow through the hardened containment vent piping to the adjacent reactor unit. The hardened pipe vent systems of both units are joined at the mixing chamber at the base of the stack. Per RELAP5 code simulation results, hydrogen will retain significant concentrations in the mixing chamber regions and at the entrances of the connected pipes during the high pressure venting stage of the proposed venting scenario. The concentration of hydrogen will drop after the transition to the low pressure venting. The time required to reduce hydrogen concentration to less than 4% from the connected pipes vary depending on the sizes and location of the pipes. The results and conclusions can be used to support the HCVS design changes to provide severe accident venting capability and compliance with Phases 1 and 2 of the NRC Order EA-13-109.