ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Mirion announces appointments
Mirion Technologies has announced three senior leadership appointments designed to support its global nuclear and medical businesses while advancing a company-wide digital and AI strategy. The leadership changes come as Mirion seeks to advance innovation and maintain strong performance in nuclear energy, radiation safety, and medical applications.
Seong Gu Kim, Maolong Liu, Youho Lee (Univ of New Mexico), Jeong Ik Lee (KAIST)
Proceedings | Advances in Thermal Hydraulics 2018 | Orlando, FL, November 11-15, 2018 | Pages 331-342
Fluoride salt-cooled high-temperature reactor (FHR) is one of the Gen IV nuclear systems. It utilizes small spherical type fuel with 30mm diameter, and the core is filled with numerous pebbles. The authors developed a simple code that generates randomly-packed spherical fuels inside the cylindrical core. The fluid domain was generated and converted to perform the Computational Fluid Dynamics (CFD) analysis to figure out the local heat transfer coefficient of pebble-bed fuels. To ensure promising CFD analysis model the authors examined sensitive parameters – the number of pebbles, grid size and gap size and turbulence models. Large-Eddy Simulation (LES) was performed for the selection of the turbulence model with face-centered cubic (FCC) single channel model. As a result, k-omega Shear Stress Transport (SST) with gamma transition model is selected as a turbulence model for randomly-packed pebble’s CFD analysis. The result shows that the pebble’s local heat transfer coefficient has a Gaussian distribution with average and standard deviation. Furthermore, the authors propose a new Nusselt number correlation for the randomly-packed pebble bed reactor with FLiBe coolant. The result leads to a conclusion that the thermal-hydraulic performance of fuel has a statistical distribution and it will have the effect on the robustness of fuel material and design criteria of safety systems.