ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
M. Solom, D. Osborn, K. Ross (SNL), Karen Vierow Kirkland, A. Patil (Texas A&M), N. Tsuzuki (The Inst of Applied Energy)
Proceedings | Advances in Thermal Hydraulics 2018 | Orlando, FL, November 11-15, 2018 | Pages 170-182
In light of the exceptional performance of the Reactor Core Isolation Cooling (RCIC) Systems during the 2011 accidents at Fukushima Daiichi Units 2 and 3, a better understanding of the system’s true operating potential and realistic limits has become an area of active interest. The system, which supplies cooling water to the reactor in various scenarios, has at the heart of it a Terry steam turbine which drives a pump. Previously, conservative analyses predicted RCIC System failure where Fukushima demonstrated operability. In addition, systems-level codes have had difficulties adequately modeling the behavior of Terry turbines, especially in cases of two-phase (steam-water) ingestion. An improved understanding of the true behavior of the system and its constituent components is key not only to understanding the progression of the Fukushima accidents but it also promises to offer improved operator guidance and a potential avenue for cost savings.
The Terry Turbine Expanded Operating Band Program was born of the desire for improved knowledge and modeling of Terry turbine-based systems shared by almost all Pressurized Water Reactor and Boiling Water Reactor owners and operators in the world. It is an international collaboration intending to improve the current understanding of Terry turbopump behavior through experiments and simulation, thus expanding its operational range, with goals of improving nuclear reactor operations, enhancing safety and reliability, and reducing costs. To that end, research will be conducted on scales from the level of components inside the turbine up to full-size systems. Experimental testing is underway at Texas A&M University, and modeling work is being performed in both the US and Japan.