ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Mirion announces appointments
Mirion Technologies has announced three senior leadership appointments designed to support its global nuclear and medical businesses while advancing a company-wide digital and AI strategy. The leadership changes come as Mirion seeks to advance innovation and maintain strong performance in nuclear energy, radiation safety, and medical applications.
M. Solom, D. Osborn, K. Ross (SNL), Karen Vierow Kirkland, A. Patil (Texas A&M), N. Tsuzuki (The Inst of Applied Energy)
Proceedings | Advances in Thermal Hydraulics 2018 | Orlando, FL, November 11-15, 2018 | Pages 170-182
In light of the exceptional performance of the Reactor Core Isolation Cooling (RCIC) Systems during the 2011 accidents at Fukushima Daiichi Units 2 and 3, a better understanding of the system’s true operating potential and realistic limits has become an area of active interest. The system, which supplies cooling water to the reactor in various scenarios, has at the heart of it a Terry steam turbine which drives a pump. Previously, conservative analyses predicted RCIC System failure where Fukushima demonstrated operability. In addition, systems-level codes have had difficulties adequately modeling the behavior of Terry turbines, especially in cases of two-phase (steam-water) ingestion. An improved understanding of the true behavior of the system and its constituent components is key not only to understanding the progression of the Fukushima accidents but it also promises to offer improved operator guidance and a potential avenue for cost savings.
The Terry Turbine Expanded Operating Band Program was born of the desire for improved knowledge and modeling of Terry turbine-based systems shared by almost all Pressurized Water Reactor and Boiling Water Reactor owners and operators in the world. It is an international collaboration intending to improve the current understanding of Terry turbopump behavior through experiments and simulation, thus expanding its operational range, with goals of improving nuclear reactor operations, enhancing safety and reliability, and reducing costs. To that end, research will be conducted on scales from the level of components inside the turbine up to full-size systems. Experimental testing is underway at Texas A&M University, and modeling work is being performed in both the US and Japan.