ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Mirion announces appointments
Mirion Technologies has announced three senior leadership appointments designed to support its global nuclear and medical businesses while advancing a company-wide digital and AI strategy. The leadership changes come as Mirion seeks to advance innovation and maintain strong performance in nuclear energy, radiation safety, and medical applications.
E. Eidelpes, L. F. Ibarra (Univ of Utah), R. A. Medina (Univ of New Hampshire)
Proceedings | 16th International High-Level Radioactive Waste Management Conference (IHLRWM 2017) | Charlotte, NC, April 9-13, 2017 | Pages 195-205
The work presented in this paper is part of investigations on the structural integrity of Spent Nuclear Fuel (SNF) casks after long-term storage and subjected to normal or accidental conditions of transport. The main challenge of this assessment is to account for the time dependent material degradation mechanisms of the cask components. A Probabilistic Risk Assessment (PRA) is used for the overall assessment of the structural integrity of the relevant package components. SNF rod cladding is likely to control structural failure due to mechanical loads, which can be accelerated by hydride related material degradation of fuel rods after long-term storage. Due to limited available experimental data, statistical methods are used to predict the fuel rod conditions between beginning of storage and moment of transport. The value of the Rod Internal Pressure (RIP) appears to be a driving force for the hydride-induced embrittlement. RIP examination data and recent simulations point towards relatively low Cladding Hoop Stresses (CHSs) in standard rods during drying procedures. An exemplary PRA of the likelihood of cladding embrittlement due to Radial Hydride Reorientation (RHR) is presented. The preliminary model indicates a relatively low probability of cladding embrittlement for standard fuel rods.