ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
2025: The year in nuclear
As Nuclear News has done since 2022, we have compiled a review of the nuclear news that filled headlines and sparked conversations in the year just completed. Departing from the chronological format of years past, we open with the most impactful news of 2025: a survey of actions and orders of the Trump administration that are reshaping nuclear research, development, deployment, and commercialization. We then highlight some of the top news in nuclear restarts, new reactor testing programs, the fuel supply chain and broader fuel cycle, and more.
E. Eidelpes, L. F. Ibarra (Univ of Utah), R. A. Medina (Univ of New Hampshire)
Proceedings | 16th International High-Level Radioactive Waste Management Conference (IHLRWM 2017) | Charlotte, NC, April 9-13, 2017 | Pages 195-205
The work presented in this paper is part of investigations on the structural integrity of Spent Nuclear Fuel (SNF) casks after long-term storage and subjected to normal or accidental conditions of transport. The main challenge of this assessment is to account for the time dependent material degradation mechanisms of the cask components. A Probabilistic Risk Assessment (PRA) is used for the overall assessment of the structural integrity of the relevant package components. SNF rod cladding is likely to control structural failure due to mechanical loads, which can be accelerated by hydride related material degradation of fuel rods after long-term storage. Due to limited available experimental data, statistical methods are used to predict the fuel rod conditions between beginning of storage and moment of transport. The value of the Rod Internal Pressure (RIP) appears to be a driving force for the hydride-induced embrittlement. RIP examination data and recent simulations point towards relatively low Cladding Hoop Stresses (CHSs) in standard rods during drying procedures. An exemplary PRA of the likelihood of cladding embrittlement due to Radial Hydride Reorientation (RHR) is presented. The preliminary model indicates a relatively low probability of cladding embrittlement for standard fuel rods.