ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Chris Wagner: The role of Eden Radioisotopes in the future of nuclear medicine
Chris Wagner has more than 40 years of experience in nuclear medicine, beginning as a clinical practitioner before moving into leadership roles at companies like Mallinckrodt (now Curium) and Nordion. His knowledge of both the clinical and the manufacturing sides of nuclear medicine laid the groundwork for helping to found Eden Radioisotopes, a start-up venture that intends to make diagnostic and therapeutic raw material medical isotopes like molybdenum-99 and lutetium-177.
Pavel Kudinov, Aram Karbojian, Weimin Ma, Truc-Nam Dinh
Nuclear Technology | Volume 170 | Number 1 | April 2010 | Pages 219-230
Technical Paper | Special Issue on the 2008 International Congress on Advances in Nuclear Power Plants / Thermal Hydraulics | doi.org/10.13182/NT10-A9460
Articles are hosted by Taylor and Francis Online.
Characteristics of corium debris beds formed in a severe core melt accident are studied in the Debris Bed Formation-Snapshot (DEFOR-S) test campaign, in which superheated binary-oxidic melts (both eutectic and noneutectic compositions) as the corium simulants are discharged into a water pool. Water subcooling and pool depth are found to significantly influence the debris fragments' morphology and agglomeration. When particle agglomeration is absent, the tests produced debris beds with porosity of [approximately]60 to 70%. This porosity is significantly higher than the [approximately]40% porosity broadly used in contemporary analysis of corium debris coolability in light water reactor severe accidents. The impact of debris formation on corium coolability is further complicated by debris fragments' sharp edges, roughened surfaces, and cavities that are partially or fully encapsulated within the debris fragments. These observations are made consistently in both the DEFOR-S experiments and other tests with prototypic and simulant corium melts. Synthesis of the debris fragments from the DEFOR-S tests conducted under different melt and coolant conditions reveal trends in particle size, particle sphericity, surface roughness, sharp edges, and internal porosity as functions of water subcooling and melt composition. Qualitative analysis and discussion reaffirm the complex interplay between contributing processes (droplet interfacial instability and breakup, droplet cooling and solidification, cavity formation and solid fracture) on particle morphology and, consequently, on the characteristics of the debris beds.