ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
Piyush Sabharwall, Vivek Utgikar, Fred Gunnerson
Nuclear Technology | Volume 167 | Number 2 | August 2009 | Pages 325-332
Technical Note | Thermal Hydraulics | doi.org/10.13182/NT09-A8967
Articles are hosted by Taylor and Francis Online.
Heat pipes and thermosyphons can be very effective heat transport devices for transferring the thermal energy of the Next Generation Nuclear Plant to a hydrogen production plant and/or other process heat applications. These devices operate nearly isothermally, transporting large amounts of thermal energy with little or no temperature drop. A dimensional analysis of the thermosyphon and the heat pipe is presented in this paper. Dimensional analysis is a valuable mathematical technique useful in research work for design and conducting model tests. This analysis yielded two terms - Er and EM - particular to the operation of these devices in addition to those commonly used in many heat transfer applications. The Er term relates the latent heat of vaporization to the pressure drop across the device, while the EM term relates the latent heat of vaporization to the capillary pressure. The significance of these two terms is discussed. The universal nature of these numbers should be useful in increasing the fundamental understanding of both the thermosyphon and the heat pipe.